Entsprechend den "Richtlinien zur Sicherheit im Unterricht" (RiSU) vom 26.02.2016 ist für jedes im Unterricht durchgeführte Experiment eine Gefährdungsbeurteilung zu erstellen.

Experiment	Iodometrie I – Bestimmung der Konzentration an Cu²+			
Chemikalien	 Natriumthiosulfatlösung (0,1 mol·L⁻¹) (lösliche) Stärke Kaliumiodid verd. Schwefelsäure z.B. Kupfersulfatlösung (als Analysenlösung) 			
Geräte	 Bürette Vollpipetten mit Pipetierhilfe Stativmaterial, Muffen Spatel Bechergläser 			
Durchführung	Am Anfang wird eine Natriumthiosulfatlösung bestimmter Konzentration (0,1 mol·L¹) hergestellt, indem auf einen Liter destilliertes Wasser 24,82 g Na₂S₂O₃·5H₂O eingewogen werden und eine Stärkelösung hergestellt wird. Für die eigentliche Titration wird die Cu²+-Lösung mit Kaliumiodid im Überschuss versetzt (ca. 1-2 g) und mit verdünnter Schwefelsäure sauer eingestellt. Es wird sofort die 0,1 M Natriumthiosulfatlösung hinzutitriert und zwar wird zuerst soviel Thiosulfatlösung zugesetzt, bis die braune Farbe zu verblassen beginnt. Danach setzt man Stärkelösung zu und titriert weiter bis der violett-blaue Farbton der lodstärke verschwindet (tritt beim Zusatz der Stärkelösung keine Blaufärbung ein, dann war schon übertitriert, die Stärkelösung kann auch von Anfang an zugegeben werden, aber der violett-blaue Farbton ist dann kaum erkennbar).			
Beobachtungen				
Analysenlösung nach Zugabe von KI (Braunfärbung und Ausfallen eines Niederschlags)		Analysenlösung nach erster Zugabe von Na ₂ S ₂ O ₃ (Verblassen der Lösung)	Analysenlösung nach Zugabe von Stärkelösung (Violett-blau Färbung)	Analysenlösung nach Erreichen des Äquivalenzpunktes (milchig weiße Lösung)

Dieses Material wurde erstellt durch A. Kruppa und steht unter der Lizenz CC BY-SA 4.0. Teilen und Bearbeiten unter Bedingung der Namensnennung und Weitergabe unter gleichen Bedingungen

Erklärungen	Ein großer Überschuss an KI ist notwendig, um eine vollständige Umsetzung zu CuI und I_2 zu gewährleisten. Das CuI bildet dabei einen Niederschlag, das Iod färbt die Lösung braun:	
	$2 \text{ Cu}^{2+} + 4 \text{ I}^{-} \rightarrow 2 \text{ CuI} + \text{I}_{2}$	
	Das durch das Kupfer gebildete I_2 wird mit Thiosulfat-Ionen zu Iodid-Ionen reduziert. Sobald das gesamte Iod umgesetzt wurde, schlägt die Farbe des Iod-Stärke-Komplexes um: $I_2 + 2 S_2 O_3^{2-} \rightarrow 2 I_7 + S_4 O_6^{2-}$	
	12 1 2 5255 1 2 1 1 5456	
Didaktische Hinweise	Durch die Reaktionsgleichungen ist zu erkennen, dass am Äquivalenzpunkt: $n(Cu^{2+}) = n(S_2O_3^{2-})$ gilt. Die Berechnung der Kupfer(II)-Ionernkonzetration ist daher sehr einfach.	
	Zur Stabilisierung der Natriumthiosulfatlösung kann dieser ein Spatel Natriumcarbonat beigefügt werden.	