Bau von Stoffen

- Stoffklasse (Molekülsubstanzen, Ionensubstanzen....)
- Name und Art der Teilchen
- Anziehungskräfte innerhalb / zwischen den Teilchen (Bindungen, zwischenmolekulare Kräfte)
- Formel
- Struktur der Teilchen (evtl. Skizze)
 - räumliche Anordnung
 - Abstände
 - Beweglichkeit

Eigenschaften von Stoffen

- mit Sinnesorganen wahrnehmbar z.B.: Farbe, Geruch, Aggregatzustand
- $-stoff spezifische\ Eigenschaften\ /\ physikalische\ Eigenschaften$
- z.B.: Dichte, Siede- und Schmelztemperatur
- experimentell bestimmbare Eigenschaften / chemische Eigenschaften z.B.: Wasserlöslichkeit, Brennbarkeit, elektrische Leitfähigkeit
- physiologische Wirkung z.B.: giftig, krebserregend

Teilchenarten

Teilchenart	Atom	Molekül	Ion	
Merkmale	 nach außen hin elektrisch neutral Anzahl der Protonen = Anzahl der Elektronen 	 besteht aus mindestens zwei gleichen oder unterschiedlichen miteinander verbundenen Atomen nach außen hin elektrisch neutral 	 elektrisch geladenes Teilchen atomarer Größenordnung Kation: positiv geladen Anion: negativ geladen 	
Beispiel				
Name	Chloratom	Chlormolekül	Chlorid-Ion	Magnesium-Ion
chem. Zeichen	Cl	Cl_2	Cl^{-}	Mg^{2+}

Chemische Zeichensprache

chemische Zeichen:

- **Arten von Formeln:**
 - Summenformel: Verhältnisformel (MgCl₂)/ Molekülformel (H₂O)
 - Strukturformel: vereinfacht CH_3 CH_2 CH_3 , ausführlich $H-C \equiv C-H$
 - Lewisformel: $\bullet \overline{Cl}$

Gleichungen:

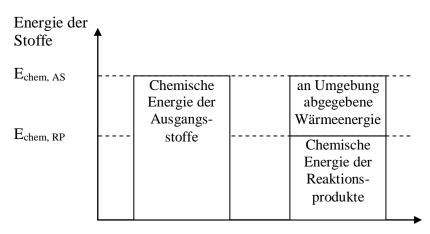
- chemische Gleichung/ Reaktionsgleichung:

z.B.:
$$2 Mg + O_2 \longrightarrow 2 MgO$$

Merkmale chemischer Reaktionen

1. Stoffumwandlung

→ Bei allen chemischen Reaktionen finden Stoffumwandlungen statt. Es entstehen neue Stoffe mit anderen Eigenschaften.

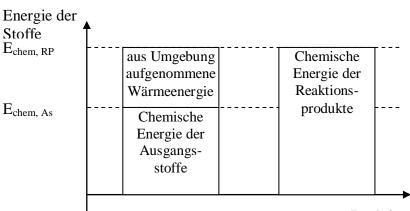

Ausgar	ngsstoffe		Reaktionsprodukte
z.B. Magnesium + silbrig glänzend fest brennbar	Sauerstoff farblos gasförmig fördert die Verbrennung		Magnesiumoxid weiß fest, pulvrig nicht brennbar
elektrisch leitfähig			

2. Energieumwandlung

→ Bei allen chemischen Reaktionen findet die Umwandlung chemischer Energie der Stoffe in andere Energieformen (oder umgekehrt) statt.

Bei Reaktionen, die mit Wärmeerscheinungen verbunden sind, unterscheidet man zwischen **exothermen** und **endothermen** Reaktionen.

2.1. Exotherme Reaktion



Reaktion verläuft unter Wärmeabgabe an die Umgebung

Reaktionsverlauf

- Chemische Energie der Ausgangsstoffe wird umgewandelt in chemische Energie der Reaktionsprodukte und Wärmeenergie
- $E_{chem. AS} > E_{chem. RP}$

2.2. Endotherme Reaktion

• Reaktion verläuft unter Wärmeaufnahme aus der Umgebung

Reaktionsverlauf

- Thermische Energie der Umgebung wird umgewandelt in chemische Energie der Reaktionsprodukte
- $E_{chem, AS} < E_{chem, RP}$

3. Umbau und Veränderung der Teilchen und chemischen Bindungen

→ Bei allen chemischen Reaktionen kommt es zur Veränderung der Teilchen. Dabei bleibt die Anzahl der gebundenen Teilchen der in den Ausgangsstoffen und Reaktionsprodukten enthaltenen Elemente stets gleich. (Gesetz von der Erhaltung der Masse)

→ Bei allen chemischen Reaktionen werden vorhandene chemische Bindungen gelöst und neue Bindungen geknüpft.

z.B.Kohlenstoff
C
Kohlenstoff-
atome+ Sauerstoff
+
$$O_2$$

Sauerstoff-
moleküleKohlendioxid
Kohlendioxid-
moleküleAtombindung
zw. Kohlenstoff-
atomenAtombindung
zw. Sauerstoff-
atomenpolare Atombindung
zw. Kohlenstoff- und
Sauerstoffatomen

Beeinflussbarkeit chemischer Reaktionen

Die Reaktionsgeschwindigkeit kann erhöht werden durch:

1. Temperaturerhöhung

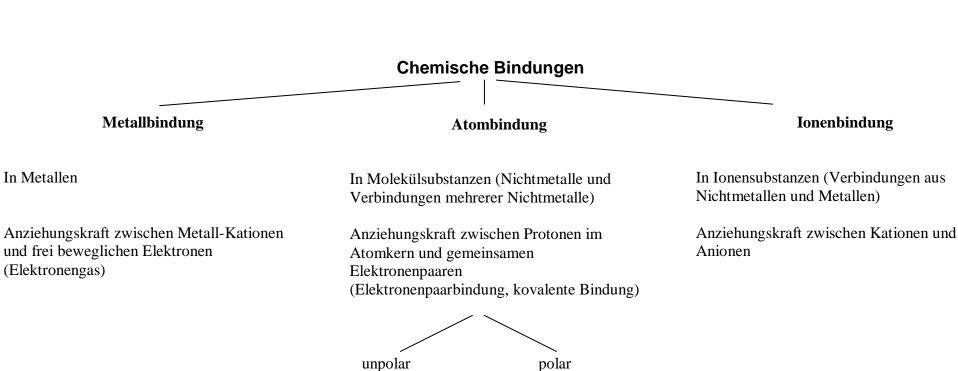
z.B. Förderung des "Gehens" von Hefeteig an einem warmen Ort

2. Erhöhung der Konzentration der Ausgangsstoffe

z.B. Förderung der Verbrennung von Holzkohle beim Grillen durch Luft- (Sauerstoff-) Zufuhr

3. Verbesserung der Durchmischung der Ausgangsstoffe / Erhöhung des Zerteilungsgrades

z.B. Gefahr von Kohlestaubexplosionen


4. Katalysatoren

Ein Katalysator nimmt unter Bildung instabiler Zwischenprodukte an der Reaktion teil. Die nun ablaufende Reaktion benötigt eine geringere Aktivierungsenergie und läuft dadurch schneller ab. Am Ende der Reaktion liegt der Katalysator in unveränderter Form wieder vor.

z.B. Umsatz von Schadstoffen am Autoabgaskatalysator

Stoffklassen

	Metalle	Molekülsubstanzen	Ionensubstanzen	Polymere Stoffe
Art der Teilchen	Metall-Atome, Metall-Ionen, frei bewegliche Elektronen	Moleküle	Kationen, Anionen	Makromoleküle
Anordnung der Teilchen im Feststoff	Metallgitter Metallkristall	Atomgitter Atomkristall, Molekülkristall	Ionengitter Ionenkristall	teilweise Atomverband
Art der chemischen Bindung	Metallbindung	Atombindung (Elektronenpaarbindung, kovalente Bindung)	Ionenbindung	Atombindung
Charakteristi- sche Eigenschaften	Aggregatzustand: fest hohe Schmelz- und Siedetemperatur elektrisch leitfähig verformbar wärmeleitfähig Glanz	Aggregatzustand: gasförmig / flüssig relativ niedrige Schmelz- und Siedetemperatur	Aggregatzustand: fest sehr hohe Schmelz- und Siedetemperatur elektrisch leitfähig nur in Lösung und in der Schmelze spröde	Aggregatzustand: fest relativ hohe Schmelz- und Siedetemperatur, oft zersetzlich meist nicht elektrisch leitfähig plastisch/elastisch verformbar/weich/ hart

Ausbildung gemeinsamer Elektronenpaare (EP)

EP wird von beiden Elementen gleich stark angezogen EP wird vom elektronegativeren Element stärker angezogen

 $\Delta EN = 0$

 $\Delta EN > 0$

Natrium

Chlor Chlorwasserstoff

Natriumchlorid

Zwischenmolekulare Kräfte

Kraft	Van-der-Waals-Kräfte	Dipol-Dipol-Kräfte	Wasserstoffbrücken- bindungen
Wesen Anziehungskräfte zwischen Molekülen		Anziehungskräfte zwischen Dipol- Molekülen, die auf den Wechselwirkungen zwischen entgegengesetzten Teilladungen beruhen. nötig sind: - polare Atombindungen, die zu Teilladungen (Partialladungen) führen - räumlich getrennte Ladungsschwerpunkte	Anziehungskräfte zwischen stark polar gebundenen, teilweise (partiell) positiv geladenen Wasserstoffatomen und freien Elektronenpaaren eines stark elektronegativen Elements (F, O, N)
Stärke (allg.)		1	
		zunehmend	
Stärke abhängig von	Molekülgröße (Molekülmasse)	EN-Differenz der Atome und damit Polarität der Atombindung (Größe der Partialladungen)	EN-Werten der Bindungspartner der Wasserstoffatome
beeinflusste Stoff- eigenschaften	 Siede- und Schmelztemperatur Aggregatzustand 	 Siede- und Schmelztemperatur Aggregatzustand Löslichkeit in bestimmten Lösungsmitteln 	 Siede- und Schmelztemperatur Aggregatzustand Löslichkeit in bestimmten Lösungsmitteln Dichte
Beispiele	Wasserstoff Chlorwasserstoff Wasser	Chlorwasserstoff Wasser	Wasser

Reaktionsarten

Säure-Base-Reaktion

Def.: Säure-Base-Reaktionen sind chemische Reaktionen, bei denen Wasserstoffionen H⁺ (Protonen) von einem Teilchen auf ein anderes übergehen.

Säure-Base-Definition Säuren sind Stoffe, die bei der nach ARRHENIUS

Dissoziation in wässriger Lösung

 $HCI \stackrel{\longrightarrow}{\longleftarrow} H^+ + CI^-$

Basen sind Stoffe, die bei der Dissoziation in wässriger Lösung Wasserstoff-Ionen abspalten, z. B. Hydroxid-Ionen abspalten, z. B.

 $NaOH \longrightarrow Na^+ + OH^-$

Exotherme chemische Reaktion, bei der Wasserstoff-Ionen einer sauren Neutralisation

Lösung mit den Hydroxid-Ionen einer basischen Lösung zu einer neutralen

Lösung reagieren. $H^+ + OH^- \longrightarrow H_2O$

Redoxreaktion:

Def.: Redoxreaktionen sind Reaktionen mit Elektronenübergang, bei denen eine Oxidationsreaktion und eine Reduktionsreaktion miteinander gekoppelt sind.

Redoxreaktionen sind Reaktionen, bei denen sich die Oxidationszahlen von Elementen durch Elektronenübergang verändern.

Oxidation: Reaktion, bei der Elektronen abgegeben werden. (OZ ↑) Reduktion: Reaktion, bei der Elektronen aufgenommen werden. (OZ 1)

Oxidationsmittel: Reaktionsteilnehmer, deren Oxidationszahl durch Elektronenaufnahme kleiner

wird. Das Oxidationsmittel wird bei der Redoxreaktion reduziert.

Oxidation

Reduktionsmittel: Reaktionsteilnehmer, deren Oxidationszahl durch Elektronenabgabe größer wird.

Das Reduktionsmittel wird bei der Redoxreaktion oxidiert

Fällungsreaktion

2 Br⁻-

 \rightarrow Br₂ + 2 e⁻

Def.: Fällungsreaktionen sind chemische Reaktionen, bei denen Ionen eines schwerlöslichen Salzes in der Lösung zusammentreten, so dass dieses Salz als Niederschlag ausfällt.

In Reaktionsgleichungen wird das Ausfallen eines Stoffes mit einem ↓ oder einem (s) für solid hinter der Summenformel des Stoffs gekennzeichnet. Fällungsreaktionen werden oft als Nachweisreaktionen eingesetzt. (z.B. Sulfat-, Halogenid-, Carbonat-Nachweis)

z. B.:
$$SO_4^{2^-} + Ba^{2^+}$$
 \longrightarrow $BaSO_4 \downarrow$ $Ag^+ + Cl^ \longrightarrow$ $AgCl \downarrow$

Oxidationszahlen

Angabe von Art und Anzahl der Ladungen von freien oder in Verbindungen enthaltenen Elementen, wobei jedes einzelne Teilchen der Elemente als Ion betrachtet wird.

Die Oxidationszahlen können als arabische Ziffern mit positivem oder negativem Vorzeichen über dem Symbol angegeben werden.

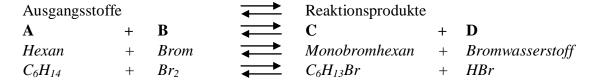
Festlegungen beim Bestimmen von Oxidationszahlen

	Es gilt für	die Festlegung	z.B.
1.	freie Elemente	Oxidationszahl = ±0	±0 ±0
			Cl_{2} ; Cu
2.	Moleküle von Verbindungen ¹	Summe aller Oxidationszahlen = 0	+4 -2
			$C O_2$
3.	einfache Ionen	Oxidationszahl = elektrische Ladung	+1 -1
			Na^+ ; Br^-
4.	zusammengesetzte Ionen	Summe aller Oxidationszahlen =	-3 +1
		elektrische Ladung	NH_4^+
5.	Elemente in Verbindungen		
5.1.	-Metalle	Oxidationszahl = immer positiv,	+2 -2
		entspricht der "Ladung"	Cu 0
5.2.	-Wasserstoff	Oxidationszahl = +1	+1 -2
5.3.	-Sauerstoff	Oxidationszahl = -2	$H_2 O$
6.	elektrisch neutrale Atomgruppen	Summe aller Oxidationszahlen = 0	-3 +1
	organischer Verbindungen		-C H ₃

¹ Bei Verbindungen mit Ionenbindung wird entsprechend der Formel das Zahlenverhältnis der Ionen zugrunde gelegt.

Redoxreaktionen: die OZ ändern sich → Reaktion mit Elektronenübergang

Teilreaktion Oxidation: OZ werden größer → Elektronenabgabe Teilreaktion Reduktion: OZ werden kleiner → Elektronenaufnahme


Kohlenwasserstoffe

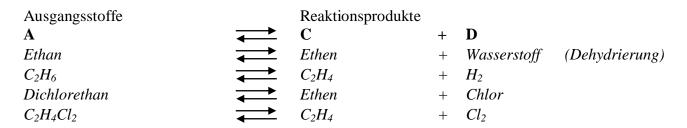
	Alkane	Alkene	Alkine
Beispiel (Name, Summenformel, Strukturformel)	Methan, CH ₄ H H—C—H H H		
	Ethan, C ₂ H ₆ H H H—C—C—H H	Ethen, C_2H_4 H $C = C$ H	Ethin, C_2H_2 H — C \equiv C — H
	<i>Propan,</i> C_3H_8	Propen, C_3H_6 H C C H H H H H H H H	Propin, C_3H_4 H H C C H H H H
Allgemeine Summenformel	C_nH_{2n+2}	C_nH_{2n}	C_nH_{2n-2}
Strukturmerkmal	Einfachbindung (gesättigt)	Doppelbindung (ungesättigt)	Dreifachbindung (ungesättigt)
Typische Reaktionen	Substitution Eliminierung	Addition Eliminierung	Addition
Nachweis		Bromwasser wird entfärbt	Bromwasser wird entfärbt

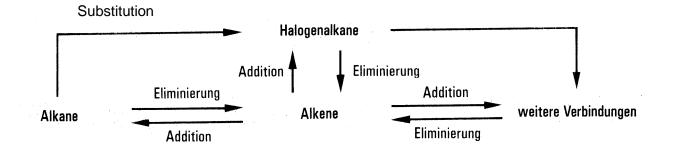
Organische Grundreaktionen

• **Substitution:** (lat. *substituere*: ersetzen)

Def.: Die Substitution ist eine chemische Reaktion, bei der zwischen den Molekülen der Ausgangsstoffe Atome bzw. Atomgruppen ausgetauscht werden.

Substitutionen sind bevorzugt bei allen Alkanen möglich.


• **Addition:** (lat. *addere* = dazugeben)


Def.: Die Addition ist eine chemische Reaktion, bei der sich jeweils zwei Moleküle der Ausgangsstoffe unter Aufspaltung von Mehrfachbindungen zu einem Molekül des Reaktionsprodukts verbinden.

Ausgangssto	offe			Reaktionsprodukte	
\mathbf{A}	+	В	\longrightarrow	C	
Ethen	+	Chlor	\longrightarrow	Dichlorethan	(Halogenierung)
C_2H_4	+	Cl_2	\longrightarrow	$C_2H_4Cl_2$	
Ethen	+	Wasserstoff	\longrightarrow	Ethan	(Hydrierung)
C_2H_4	+	H_2	\rightleftharpoons	C_2H_6	

• Eliminierung: (lat. *eliminare* "über die Schwelle bringen, entfernen")

Def.: Die Eliminierung ist eine chemische Reaktion, bei der aus jeweils einem Molekül des Ausgangsstoffs mindestens zwei Atome unter Ausbildung von Mehrfachbindungen abgespalten werden.

Organische Stoffe mit dem Element Sauerstoff im Molekül

Stoffklasse	e	Alkanole		Alkanale		Alkansäuren	
Strukturmerkmal		Hydroxygruppe –OH (Hydroxylgruppe)		Aldehydgruppe –CHO		Carboxylgruppe -COOH	
Beispiele Struktur- formel	Name	CH ₃ OH CH ₃ — CH ₂ OH	Methanol Ethanol	н сно сн ₃ — сно	Methanal (Formaldehyd) Ethanal (Acetaldehyd)	н соон сн ₃ — соон	Methansäure (Ameisensäure) Ethansäure (Essigsäure)
		CH ₃ —CH ₂ —CH ₂ OH	Propanol	CH ₃ —CH ₂ —CHO	Propanal	CH ₃ —CH ₂ —COOH	Propansäure
Nachweis	n	- Verbrennung (Redoxre 2C ₃ H ₇ OH + 9O ₂ → 6C - Rektion mit Kupfer(II) R-CH ₂ OH + CuO R-CHO (Dehydrierung zu Alka	$CO_2 + 8H_2O$ 0-oxid $+ Cu + H_2O$	- Fehlingsche Probe Niederschlag - Silberspiegelprobe (→ schwarzer Nieders Silberspiegel - Schiffs-Reagenz (Fu Säure) → Rosa- bis V - Verbrennung (Redo: C ₂ H ₅ CHO + 3O ₂ → Reduktion anderer Soxidation zu Alkans Nachweise)	Tollenssche Probe) schlag oder schsinschweflige violettfärbung xreaktion) 3CO ₂ + 3H ₂ O stoffe, dabei	- Verbrennung (Redoxrea 2C ₂ H ₅ COOH + 7O ₂ → 6 - Dissoziation R-COOH → R-COO - Reaktion mit unedlen M 2 R-COOH + Mg → (R-Neutralisation (Säure-B R-COOH + NaOH → R - Reaktion mit Metalloxid	ktion) 6CO ₂ + 6H ₂ O + H ⁺ letallen -COO) ₂ Mg + H ₂ ase-Reaktion) -COONa + H ₂ O
Oxidations	reihe	eihe CH_3 — CH_2 OH $Oxidation$ CH_3 — CHO $Oxidation$ $Reduktion$			(-COO)2CU + H2O		

Nachweisreaktionen

	Nachweismittel	Beobachtung				
Sauerstoff O ₂	Spanprobe	Aufglühen				
Wasserstoff H ₂	Knallgasprobe					
Wasserstoff-Ion H ⁺	Indikator Unitest	Rotfärbung				
Hydroxid-Ion OH ⁻	Indikator Unitest	Blaufärbung				
	Calciumhydroxidlösung (Kalkwasser) oder Bariumhydroxidlösung (Barytwasser)	weißer Niederschlag				
Kohlendioxid CO ₂	$CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow + H_2O$					
	$CO_2 + Ba(OH)_2 \longrightarrow BaCO_3 \downarrow + H_2O$					
Mehrfachbindung	Brom (Bromwasser)	Entfärbung				
	Fehlingsche Probe (Fehling I und II)	ziegelroter Niederschlag				
Aldehydgruppe -CHO	Tollens Reaktion / Silberspiegelprobe (ammoniakalische Silbernitratlösung)	Silberspiegel				
	Schiffs-Reagenz (Fuchsinschweflige Säure)	Rotviolettfärbung				
Carboxylgruppe	Indikator Unitest	Rotfärbung				
-СООН	Reaktion mit unedlen Metallen	Wasserstoffentstehung				
Stärke	Iod-Kaliumiodidlösung	Dunkelviolettfärbung				
Fette	Fettfleckprobe	durchscheinender Fleck				
Eiweiße	Xanthoproteinreaktion (Salpetersäure)	Gelbfärbung				
Liwense	Biuretreaktion (Kupfersulfatlösung und Natronlauge)	Violettfärbung				
Chlorid Ion Cl	Silbernitrat-Lösung	weißer Niederschlag				
Chlorid-Ion Cl ⁻	$AgNO_3 + Cl^- \longrightarrow AgCl \downarrow + NO_3^-$	$AgNO_3 + Cl^- \longrightarrow AgCl + NO_3^-$				
Duomid Ion Dr	Silbernitrat-Lösung	käsiger Niederschlag				
Bromid-Ion Br ⁻	$AgNO_3 + Br^- \longrightarrow AgBr \downarrow + NO_3^-$					
Iodid-Ion I	Silbernitrat-Lösung	gelber Niederschlag				
10010-1011 1	$AgNO_3 + I^- \longrightarrow AgI \downarrow + NO_3^-$					
Sulfat-Ion SO ₄ ²⁻	(Ansäuern mit verd. Salzsäure) Bariumchlorid-Lösung	weißer Niederschlag				
Sunut-1011 SO4	$BaCl_2 + SO_4^{2-} \longrightarrow BaSO_4 \downarrow + 2Cl^{-}$					
Carbonat-Ion CO ₃ ²⁻	mit verd. Salzsäure versetzen, entstehendes Gas in Calcium- oder Bariumhydroxid-Lösung einleiten	Gasentstehung weißer Niederschlag				
	$CO_3^{2-} + 2H^+ \longrightarrow CO_2 \uparrow + H_2O^-$ (weiter siehe CO_2)					
	•					