Entsprechend den "Richtlinien zur Sicherheit im Unterricht" (RiSU) vom 26.02.2016 ist für jedes im Unterricht durchgeführte Experiment eine Gefährdungsbeurteilung zu erstellen.

Experiment	Redoxreaktionen mit Benzaldehyd
Chemikalien	Variante I: • Benzaldehyd • Kaliumpermanganatlösung (c = 0,02 mol/l) • Natronlauge (konz.)
	 <u>Variante II:</u> Benzaldehyd Kaliumpermanganatlösung (c = 0,02 mol/l) Natronlauge (stark verdünnt) <u>Variante III:</u>
	Benzaldehyd Tollens Reagenz
Geräte	 Reagenzgläser Pipetten Wasserbad (70-80°C)
Durchführung	Variante I: 10 Tropfen Benzaldehyd mit 2 ml konzentrierter Natronlauge mischen, anschließend mit 2 Tropfen Kaliumpermanganatlösung versetzen und leicht schütteln.
	<u>Variante II:</u> 10 Tropfen Benzaldehyd mit 1 ml stark verdünnter Natronlauge mischen, anschließend mit 2 Tropfen Kaliumpermanganatlösung versetzen und leicht schütteln.
	<u>Variante III:</u> 10 Tropfen Benzaldehyd mit etwa 1 ml Tollens Reagenz versetzen und im Wasserbad erwärmt.
Beobachtungen	Variante I: Lösung färbt sich grün und wird trübe.
	Variante II: Lösung färbt sich braun und wird trübe.
	Variante III: Schwarzes Silber fällt aus.
Erklärungen	Die Permanganat-Ionen oxidieren Benzaldehyd zu Benzoat-Ionen:
	<u>Variante I:</u>
	C_6H_5 —CHO + 2 MnO ₄ ⁻ + 3 OH ⁻ \longleftrightarrow C_6H_5 —COO ⁻ + 2 MnO ₄ ²⁻ + 2 H ₂ O
	Variante II:
	$3 C_6H_5-CHO + 2 MnO_4^- + OH^- \longrightarrow 3 C_6H_5-COO^- + 2 MnO(OH)_2$
	Variante III:
	Silber-Ionen oxidieren Benzaldehyd zu Benzoat-Ionen: $C_6H_5\text{CHO} + 2 \text{ Ag}^+ + 3 \text{ OH}^- C_6H_5\text{COO}^- + 2 \text{ Ag} \downarrow + 2 \text{ H}_2\text{O}$
	C6115-C110 + 2 Ag + 3 Of ← C6Π5-COO + 2 Ag + 2 Π2O

Dieses Material wurde erstellt durch St. Schäfer und steht unter der Lizenz CC BY-SA 4.0. Teilen und Bearbeiten unter Bedingung der Namensnennung und Weitergabe unter gleichen Bedingungen

