Entsprechend den "Richtlinien zur Sicherheit im Unterricht" (RiSU) vom 26.02.2016 ist für jedes im Unterricht durchgeführte Experiment eine Gefährdungsbeurteilung zu erstellen.

Experiment	Endotherme Reaktionen fester Salze II
Chemikalien	 Eisen(III)-nitrat-Nonahydrat Natriumthiosulfat-Pentahydrat Unitestpapier Wasser
Geräte	 kleines Becherglas oder Kalorimetergefäß Glasstab Thermometer
Durchführung	In einem kleinen Becherglas oder Kalorimetergefäß mischt man 10,1 g Eisen(III)- nitrat-Nonahydrat und 9,3 g Natriumthiosulfat-Pentahydrat und misst die Temperatur. Über das Gemisch hält man einen angefeuchteten Streifen Unitestpapier.
Beobachtungen	Das Gemisch färbt sich zunächst braun und wird dann flüssig. Die Temperatur sinkt deutlich um 20-25 K.
Erklärungen	In einer Disproportionierung zerfällt das Thiosulfat in Schwefeldioxid und elementaren Schwefel. Die Reaktion wird durch das freigesetzte Kristallwasser initiiert.
	$Fe(NO_3)_3 \rightarrow Fe^{3+} + 3NO_3^-$
	$Fe^{3+} + 6 H_2O \rightarrow [Fe(H_2O)_6]^{3+}$
	$[Fe(H_2O)_6]^{3+} + H_2O \rightarrow [Fe(H_2O)_5OH]^{2+} + H_3O^+$
	Oxidation: $S_2O_3^{2-} + H_2O \rightarrow 2 SO_2 + 4 e^- + 2 H^+$
	Reduktion: $S_2O_3^{2-} + 4e^- + 6H^+ \rightarrow 2S + 3H_2O$
	$2 S_2 O_3^{2-} + 4 H^+ \rightarrow 2 SO_2 + 2 S + 2 H_2 O$
	Als Bruttogleichung kann auch formuliert werden:
	$2 \text{ Fe(NO}_3)_3 \cdot 9 \text{H}_2 \text{O} + 3 \text{ Na}_2 \text{S}_2 \text{O}_3 \cdot 5 \text{H}_2 \text{O} \rightarrow 2 \text{ Fe(OH)}_3 + 6 \text{ NaNO}_3 + 3 \text{ SO}_2 + 3 \text{ S} + 30 \text{ H}_2 \text{O}$
	Die endotherme Rektion verläuft freiwillig, da die Entropie durch Erhöhung der Teilchenanzahl stark zunimmt.