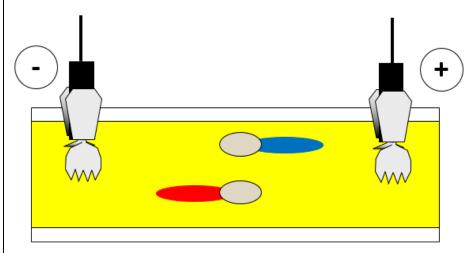
Entsprechend den "Richtlinien zur Sicherheit im Unterricht" (RiSU) vom 26.02.2016 ist für jedes im Unterricht durchgeführte Experiment eine Gefährdungsbeurteilung zu erstellen.


Experiment	Ionenwanderung (Hydronium- und Hydroxid-Ionen)
Vorbemerkung	Die Einwirkung eines äußeren elektrischen Felds hat zur Folge, dass aus der ungerichteten Bewegung der hydratisierten Ionen eine gerichtete wird.
	Die Anionen wandern zum Pluspol (Anode), die Kationen wandern zum Minuspol (Katode).
Chemikalien	 Bariumhydroxid Oxalsäure Natriumchloridlösung (c = 0,1 mol·l⁻¹) Universalindikatorpapier
Geräte	 Objektträger Gleichspannungsnetzgerät (U ≈ 12 V) 2 Kabel mit Krokodilklemmen Pipette Pinzette
Durchführung	 Zwei Streifen Universalindikatorpapier werden parallel zueinander auf einen Objektträger gelegt und mit Natriumchloridlösung getränkt. Auf die Mitte des ersten Streifens legt man einen Oxalsäure-Kristall, auf den anderen einen Bariumhydroxid-Kristall. Nach dem Auftreten von Farbflecken um die Kristalle herum, wird an den
	Enden der Universalindikatorstreifen eine Gleichspannung angelegt. Ba(OH) ₂ (COOH) ₂

Beobachtungen

Rötliche Färbung des Universalindikatorpapiers um den Oxalsäure-Kristall, Blaufärbung um den Bariumhydroxid-Kristall.

Nach dem Anlegen der Gleichspannung breitet sich die Rotfärbung in Richtung Minuspol, die Blaufärbung dagegen in Richtung Pluspol aus.

Erklärungen

Ba(OH)₂
$$\implies$$
 Ba²⁺ + 2 OH⁻

Hydroxid-Ionen verursachen die Blaufärbung und wandern in Richtung Pluspol.

$$(COOH)_2 + 2 H_2O \longrightarrow 2 H_3O^+ + (COO^-)_2$$

Hydronium-Ionen verursachen die Rotfärbung und wandern in Richtung Minuspol.

Am Minuspol entstehen durch die Elektrolyse des Wassers Hydroxid-Ionen (Blaufärbung) und am Pluspol Hydronium-Ionen (Rotfärbung).

Die Natriumchloridlösung erfüllt zwei Funktionen:

- 1. Sie liefert das für die Dissoziation von Oxalsäure bzw. Bariumhydroxid benötigte Wasser.
- 2. Die Natrium-Ionen und die Chlorid-Ionen erhöhen die elektrische Leitfähigkeit.

