Entsprechend den "Richtlinien zur Sicherheit im Unterricht" (RiSU) vom 26.02.2016 ist für jedes im Unterricht durchgeführte Experiment eine Gefährdungsbeurteilung zu erstellen.

| Experiment   | Kältemischungen mit Natriumsalzen                                                                                                                                        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemikalien  | <ul> <li>Citronensäure</li> <li>Natriumcarbonat-Decahydrat</li> <li>Natriumacetat-Trihydrat</li> <li>Aluminiumnitrat-Nonahydrat</li> </ul>                               |
| Geräte       | <ul> <li>2 kleine Bechergläser</li> <li>Waage</li> <li>Glasstab</li> <li>Spatellöffel</li> <li>Thermometer</li> </ul>                                                    |
| Durchführung | Experiment A:  In einem Becherglas werden 8,4 g Natriumcarbonat-Decahydrat mit 3,8 g Citronensäure gut durchmischt.                                                      |
|              | Experiment B:                                                                                                                                                            |
|              | In einem Becherglas werden 1 Teil Natriumacetat-Trihydrat und 1 Teil                                                                                                     |
|              | Aluminiumnitrat-Nonahydrat gut durchmischt.                                                                                                                              |
|              | Die Anfangs- und die Endtemperatur wird jeweils gemessen.                                                                                                                |
| Beobachtung  | Die Gemische werden flüssig. In beiden Experimenten sinken die Temperaturen.                                                                                             |
| Auswertung   | Diese endothermen Reaktionen verlaufen freiwillig.                                                                                                                       |
|              | <b>A</b> : $Na_2CO_3 \rightarrow 2 Na^+ + CO_3^{2-}$                                                                                                                     |
|              | $C_6H_8O_7 + H_2O \rightarrow H_3O^+ + C_6H_7O_7^-$                                                                                                                      |
|              | $CO_3^{2-} + 2 H_3O^+ \rightarrow CO_2 + + 3 H_2O$                                                                                                                       |
|              | Die Reaktionsgleichung lautet bei vollständiger Protolyse der<br>Citronensäure:                                                                                          |
|              | $2 C_6 H_8 O_{7(s)} + 3 Na_2 CO_3 \cdot 10 H_2 O_{(s)} \rightarrow 2 Na_3 C_6 H_5 O_{7 (aq)} + 3 CO_{2(g)} + 33 H_2 O_{(l)}$                                             |
|              | B: NaCH₃COO → Na <sup>+</sup> + CH₃COO <sup>-</sup>                                                                                                                      |
|              | $AI(NO_3)_3 \rightarrow AI^{3+} + 3 NO_3^-$                                                                                                                              |
|              | $Al^{3+} + 6 H_2O $ $\rightarrow$ $[Al(H_2O)_6]^{3+}$                                                                                                                    |
|              | $[AI(H_2O)_6]^{3+} + H_2O \rightarrow [AI(OH)(H_2O)_5]^{2+} + H_3O^+$                                                                                                    |
|              | $CH_3COO^- + H_3O^+ \leftarrow CH_3COOH + H_2O$                                                                                                                          |
|              | Triebkraft dieser Reaktion ist die große Entropiezunahme aufgrund der Entstehung des gasförmigen Kohlenstoffdioxids (A) und des freigesetzten Kristallwassers (A und B). |

