Entsprechend den "Richtlinien zur Sicherheit im Unterricht" (RiSU) vom 26.02.2016 ist für jedes im Unterricht durchgeführte Experiment eine Gefährdungsbeurteilung zu erstellen.

Experiment	Radieschenschalen als Indikator
Chemikalien	 Schalen von Radieschen Propan-1-ol oder Propan-2-ol verdünnte Säure und verdünnte Lauge Wasser
Geräte	 Becherglas Reagenzgläser im Reagenzglasständer Pipette Trichter mit Filterpapier Erlenmeyerkolben mit Stopfen
Durchführung	Die roten Schalen werden mit Propanol übergossen und ca. 20 Minuten stehen gelassen. Danach wird der Extrakt filtriert. Anschließend prüft man eine Säure, eine Lauge und Wasser mit einigen Tropfen des Radieschen-Indikators.
Beobachtungen	saure Lösung: orangerote Färbung neutrale Lösung: hellviolette Färbung basische Lösung: gelbgrüne Färbung

Erklärungen

Die Farbstoffe in den Radieschen gehören zu den Anthocyanen, der Hauptfarbstoff ist Cyanidin:

pH - Bereich	Struktur	Farbe
< 4	Beide OH-Gruppen am Benzolring sind protoniert. Cyanidin–Kation liegt vor.	rot
≈ 7	Eine OH–Gruppe am Benzolring ist deprotoniert.	hell-violett
> 10	Beide OH-Gruppen am Benzolring sind deprotoniert. Cyanidin-Anion liegt vor.	gelb