Entsprechend den "Richtlinien zur Sicherheit im Unterricht" (RiSU) vom 26.02.2016 ist für jedes im Unterricht durchgeführte Experiment eine Gefährdungsbeurteilung zu erstellen.

Experiment Abhängigkeiten der Reaktionsgeschwindigkeit – drei Varianten

1. Reaktion von Zink mit verdünnter Salzsäure

Abhängigkeit der Reaktionsgeschwindigkeit von Konzentration, Temperatur und Durchmischungsgrad

	Reagenzgläser vorbereiten:	А	В	С	D	Е
1.	verdünnte Salzsäure (5%ig)	10 ml	10 ml	10 ml	5 ml	2 ml
2.	Wasser				5 ml	8 ml
3.	Erwärmen		15 s			
4.	+ Zink	1 Stück	1 Stück	Pulver (1 Spatelsp.)	1 Stück	1 Stück

2. Reaktion von Kaliumpermanganat-Lösung mit Oxalsäure-Lösung

<u>Abhängigkeit der Reaktionsgeschwindigkeit von Konzentration, Temperatur und Katalysator – als geschlossene Aufgabe</u>

	Reagenzgläser vorbereiten:	RG 1	RG 2	RG 3	RG 4	RG 5	
1.	Kaliumpermanganat- lösung (0,6%ig)	2 Tropfen					
2.	destilliertes Wasser		20 Tropfen	40 Tropfen	20 Tropfen	20 Tropfen	
3.	Schwefelsäure (25 %ig)	15 Tropfen					
4.	Mangan(II)-sulfat					1 Spatelsp.	
5.	im Wasserbad auf 40°C erwärmen				X		
6.	Oxalsäurelösung (6,3 %ig)	8 Tropfen (möglichst gleichzeitig zu allen Lösungen)					

<u>Abhängigkeit der Reaktionsgeschwindigkeit von Konzentration, Temperatur und Katalysator – als offene Aufgabe</u>

Untersuche experimentell die Abhängigkeit der Reaktionsgeschwindigkeit von Temperatur, Konzentration und Einsatz eines Katalysators. (Hinweis: Autokatalyse)

Zur Verfügung stehen:

Geräte: Reagenzgläser und Reagenzglasständer, Pipetten, Reagenzglashalter, Spritzflasche

mit Wasser, Spatel

Chemikalien: Kaliumpermanganat-Lösung, Oxalsäurelösung, verdünnte Schwefelsäure,

Mangan(II)-sulfat

Dieses Material wurde erstellt durch St. Schäfer und steht unter der Lizenz CC BY-SA 4.0. Teilen und Bearbeiten unter Bedingung der Namensnennung und Weitergabe unter gleichen Bedingungen

 ⇒ siehe auch: Reaktionsgeschwindigkeit I - Untersuchung der Abhängigkeiten der Reaktionsgeschwindigkeit am Beispiel der Reaktion von Permanganat mit Oxalsäure geeignet als Praktikumsexperiment

3. Reaktion von Eisen(III)-Ionen mit Thiosulfat-Ionen

Abhängigkeit der Reaktionsgeschwindigkeit von Konzentration, Temperatur und Katalysator

	Reagenzgläser vorbereiten:	А	В	С	D
1.	FeCl₃-Lösung (0,05 M)	5 ml	5 ml	5 ml	5 ml
2.	destilliertes Wasser				2,5 ml
3.	CuSO₄-Lösung (ca. 5%ig)		5 Tropfen		
4.	Erwärmen			15 s	
5.	Na ₂ S ₂ O ₃ -Lösung (0,1 M)	5 ml	5 ml	5 ml	2,5 ml

 ⇒ siehe auch: Reaktionsgeschwindigkeit II - Untersuchung der Abhängigkeiten der Reaktionsgeschwindigkeit am Beispiel der Reaktion von Eisen(III)-Ionen mit Thiosulfat-Ionen.
Das Experiment ist außerdem ein Beispiel für eine homologe Katalyse.

